
The flowering plants or angiosperms are the most widespread group of land plants. The flowering plants and the gymnosperms comprise the two extant groups of seed plants. The flowering plants are distinguished from other seed plants by a series of apomorphies, or derived characteristics.
Angiosperm derived characteristics
The flowers of flowering plants are the most remarkable feature distinguishing them from other seed plants. Flowers aided angiosperms by enabling a wider range of evolutionary relationships and broadening the ecological niches open to them, allowing flowering plants to eventually dominate terrestrial ecosystems.
- Stamens with two pairs of pollen sacs
Stamens are much lighter than the corresponding organs of gymnosperms and have contributed to the diversification of angiosperms through time with adaptations to specialized pollination syndromes, such as particular pollinators. Stamens have also become modified through time to prevent self-fertilization, which has permitted further diversification, allowing angiosperms to eventually fill more niches.
- Reduced male parts, three cells
The male gametophyte in angiosperms is significantly reduced in size compared to those of gymnosperm seed plants. The smaller pollen decreases the time from pollination – the pollen grain reaching the female plant – to fertilization of the ovary; in gymnosperms fertilization can occur up to a year after pollination, while in angiosperms the fertilization begins very soon after pollination. The shorter time leads to angiosperm plants setting seeds sooner and faster than gymnosperms, which is a distinct evolutionary advantage.
The closed carpel of angiosperms also allows adaptations to specialized pollination syndromes and controls to prevent self-fertilization, thereby maintaining increased diversity. Once the ovary is fertilized the carpel and some surrounding tissues develop into a fruit, another opportunity for angiosperms to increase their domination of the terrestrial ecosystem with evolutionary adaptations to dispersal mechanisms.
- Reduced female gametophyte, seven cells with eight nuclei
The reduced female gametophyte, like the reduced male gametophyte may be adaptations allowing for more rapid seed set, eventually leading to such flowering plant adaptations as annual herbaceous life cycles, allowing the flowering plants to fill even more niches.
Endosperm formation generally begins after fertilization and before the first division of the zygote. Endosperm is a highly nutritive tissue that can provide food for the developing embryo, the cotyledons, and sometimes for the seedling when it first appears.
These distinguishing characteristics taken together have made the angiosperms the most diverse and numerous land plants and the most commercially important group to humans. The major exception to the dominance of terrestrial ecosystems by flowering plants is the coniferous forest.
Evolution
Land plants have existed for about 425 million years. Early land plants reproduced by spores like their aquatic counterparts. Marine organisms can easily scatter copies of themselves to float away and grow elsewhere. Land plants soon found it advantageous to protect their copies from drying out and other hazards by enclosing them in a case, the seed. Early seed bearing plants, like the ginkgo, and conifers (such as pines and firs), did not produce flowers.
The earliest fossil of an angiosperm, or flowering plant, Archaefructus liaoningensis, is dated to about 125 million years BP[1]. Pollen, considered directly linked to flower development, has been found in the fossil record perhaps as long ago as 130 million years.
While there is only hard evidence of such flowers existing about 130 million years ago, there is some circumstantial evidence that they may have existed 250 million years ago. A chemical used by plants to defend their flowers, oleanane, has been detected in fossil plants that old, including gigantopterids[2], which evolved at that time and bear many of the traits of modern, flowering plants, though they are not known to be flowering plants themselves, because only their stems and prickles have been found preserved in detail, one of the earliest examples of petrification.
The apparently sudden appearance of relatively modern flowers in the fossil record posed such a problem for the theory of evolution that it was called an "abominable mystery" by Charles Darwin.[1] However the fossil record has grown since the time of Darwin, and recently discovered angiosperm fossils such as Archaefructus, along with further discoveries of fossil gymnosperms, suggest how angiosperm characteristics may have been acquired in a series of steps. Several groups of extinct gymnosperms, particularly seed ferns, have been proposed as the ancestors of flowering plants but there is no continuous fossil evidence showing exactly how flowers evolved. Some older fossils, such as the upper Triassic Sanmiguelia, have been suggested. Based on current evidence, some propose that the ancestors of the angiosperms diverged from an unknown group of gymnosperms during the late Triassic (245-202 million years ago). The relationship of the earlier gigantopterids to flowering plants is still enigmatic.
A close relationship between Angiosperms and Gnetophytes, suggested on the basis of morphological evidence, has been disputed on the basis of molecular evidence that suggest Gnetophytes are more closely related to other gymnosperms.
Recent DNA analysis (molecular systematics) [3] [4] show that Amborella trichopoda, found on the Pacific island of New Caledonia, belongs to a sister group of the other flowering plants, and morphological studies [5] suggest that it has features which may have been characteristic of the earliest flowering plants.
The great angiosperm radiation, when a great diversity of angiosperms appear in the fossil record, occurred in the mid-Cretaceous (approximately 100 million years ago). However, a study in 2007 estimated that the division of the five most recent (the genus Ceratophyllum, the family Chloranthaceae, the eudicots, the magnoliids, and the monocots) of the eight main groups occurred around 140 million years ago.[6] By the late Cretaceous, angiosperms appear to have become the predominant group of land plants, and many fossil plants recognizable as belonging to modern families (including beech, oak, maple, and magnolia) appeared.
However, some authors have proposed an earlier origin for angiosperms, sometime in the Paleozoic (251 million years ago or more).[2][3][4]
It is generally assumed that the function of flowers, from the start, was to involve the mobile animals in the reproduction process. Pollen can be scattered without bright colors and obvious shapes. Expending energy on these structures would appear to be a liability, unless they provide significant benefit.
Island genetics provides one proposed explanation for the sudden, fully developed appearance of flowering plants. Island genetics is believed to be a common source of speciation in general, especially when it comes to radical adaptations which seem to have required inferior transitional forms. Flowering plants may have evolved in an isolated setting like an island or island chain, where the plants bearing them were able to develop a highly specialized relationship with some specific animal (a wasp, for example). Such a relationship, with a hypothetical wasp carrying pollen from one plant to another much the way fig wasps do today, could result in both the plant(s) and their partners developing a high degree of specialization. Note that the wasp example is not incidental; bees, which apparently evolved specifically due to mutualistic plant relationships, are descended from wasps.
Animals are also involved in the distribution of seeds. Fruit, which is formed by the enlargement flower parts, is frequently a seed disbursal tool which depends upon animals, who eat or otherwise disturb it, incidentally scattering the seeds it contains (see frugivory). While many such mutualistic relationships remain too fragile to survive competition with mainland animals and spread, flowers proved to be an unusually effective means of production, spreading (whatever their actual origin) to become the dominant form of land plant life.
Flowers are derived from leaf and stem components, arising from a combination of genes normally responsible for forming new shoots.[7] The most primitive flowers are thought to have had a variable number of flower parts, often separate from (but in contact with) each other. The flowers would have tended to grow in a spiral pattern, to be bisexual (in plants, this means both male and female parts on the same flower), and to be dominated by the ovary (female part). As flowers grew more advanced, some variations developed parts fused together, with a much more specific number and design, and with either specific sexes per flower or plant, or at least "ovary inferior".
Flower evolution continues to the present day; modern flowers have been so profoundly influenced by humans that some of them cannot be pollinated in nature. Many modern, domesticated flowers used to be simple weeds, which only sprouted when the ground was disturbed. Some of them tended to grow with human crops, perhaps already having symbiotic companion plant relationships with them, and the prettiest did not get plucked because of their beauty, developing a dependence upon and special adaptation to human affection.
Комментариев нет:
Отправить комментарий